In-Se (Indium-Selenium)

H. Okamoto

The experimental In-Se phase diagram in [Massalski2] was updated by [1998Oka] based on new information provided by [1995Sok].

[1998God] determined the In-Se phase diagram using differential thermal analysis, x-ray diffraction, optical microscopy, transmission electron microscopy, and scanning

 Table 1
 In-se Crystal Structure Data

Phase	Composition, at.% Se	Pearson Symbol	Space Group	Strukturbericht Designation	Proto- type
(In)	0	t/2	I4/mmm	<i>A</i> 6	In
In ₄ Se ₃	42.9	oP28	Pnnm		
InSe	50	hR4	R3m		GaSe
In ₆ Se ₇	53.8	mP26	$P2_1/m$		In ₆ S _y
In ₉ Se ₁₁	55				
In ₅ Se ₇	58.3	c*48			
δIn ₂ Se ₃	60	hP5	$P6_1$		
γIn ₂ Se ₃	60	hP30	$P6_1$		
βIn_2Se_3	59.6	hR5	$R\overline{3}m$		
αIn_2Se_3	60.5				
(Se)	100	hP3	P3 ₁ 21	A8	γSe

electron microscopy. The result is outlined in Fig. 1 with dashed lines (only the liquidus is shown). [2003Li] assessed the In-Se system thermodynamically. The result is shown by solid lines in Fig. 1.

In-Se crystal structure data (Table 1) has been copied from [2000Oka].

References

- 1995Sok: B.I. Sokolovskii, V.M. Sklyarchuk, V.P. Didoukh, and Yu.O. Plevachuk: "High Temperature and High Pressure Measurements of Electroconductivity and Thermopower for Cu₂Se, Cu₂Te, In-Se, In-Te Alloys," *High-Temp. Mater. Sci.*, 1995, 34, pp. 275-84.
- **1998God:** T. Gödecke, T. Haalboom, and F. Sommer: "Stable and Metastable Phase Equilibria of the In-Se System," *J. Phase Equilibria*, 1998, *19*(6), pp. 572-76.
- **19980ka:** H. Oka moto: "In-Se (Indium-Selenium)," J. Phase Equilibria, 1998, 19(4), p. 400.
- 2000Oka: H. Okamoto: "In-Se" in *Desk Handbook, Phase Diagrams for Binary Alloys*, ASM International, Materials Park, OH, 490 (2000)
- 2003Li: J.B. Li, M.C. Record, and J.C. Tedenac: "A Thermodynamic Assessment of the In-Se System," Z. Metallkd., 2003, 94(4), pp. 381-89.

Fig. 1 In-Se phase diagram